Distributed Subgradient Algorithm for Multi-Agent Convex Optimization with Global Inequality and Equality Constraints

نویسندگان

  • Li Xiao
  • Junjie Bao
  • Xi Shi
چکیده

In this paper, we present an improved subgradient algorithm for solving a general multi-agent convex optimization problem in a distributed way, where the agents are to jointly minimize a global objective function subject to a global inequality constraint, a global equality constraint and a global constraint set. The global objective function is a combination of local agent objective functions and the global constraint set is the intersection of each agent local constraint set. Our motivation comes from networking applications where dual and primal-dual subgradient methods have attracted much attention in the design of decentralized network protocols. Our main focus is on constrained problems where the local constraint sets are identical. Thus, we propose a distributed primal-dual subgradient algorithm, which is based on the description of the primal-dual optimal solutions as the saddle points of the penalty functions. We show that, the algorithm can be implemented over networks with changing topologies but satisfying a standard connectivity property, and allow the agents to asymptotically converge to optimal solution with optimal value of the optimization problem under the Slater’s condition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distributed Subgradient Algorithm for Multi-agent Convex Optimization with Local Constraint Sets

This paper considers a distributed constrained optimization problem, where the objective function is the sum of local objective functions of distributed nodes in a network. The estimate of each agent is restricted to different convex sets. To solve this optimization problem which is not necessarily smooth, we study a novel distributed projected subgradient algorithm for multi-agent optimization...

متن کامل

An efficient one-layer recurrent neural network for solving a class of nonsmooth optimization problems

Constrained optimization problems have a wide range of applications in science, economics, and engineering. In this paper, a neural network model is proposed to solve a class of nonsmooth constrained optimization problems with a nonsmooth convex objective function subject to nonlinear inequality and affine equality constraints. It is a one-layer non-penalty recurrent neural network based on the...

متن کامل

Asynchronous Subgradient-Push

We consider a multi-agent framework for distributed optimization where each agent in the network has access to a local convex function and the collective goal is to achieve consensus on the parameters that minimize the sum of the agents’ local functions. We propose an algorithm wherein each agent operates asynchronously and independently of the other agents in the network. When the local functi...

متن کامل

Distributed multiagent learning with a broadcast adaptive subgradient method

Many applications in multiagent learning are essentially convex optimization problems in which agents have only limited communication and partial information about the function being minimized (examples of such applications include, among others, coordinated source localization, distributed adaptive filtering, control, and coordination). Given this observation, we propose a new non-hierarchical...

متن کامل

An Accelerated Gradient Method for Distributed Multi-Agent Planning with Factored MDPs

We study optimization for collaborative multi-agent planning in factored Markov decision processes (MDPs) with shared resource constraints. Following past research, we derive a distributed planning algorithm for this setting based on Lagrangian relaxation: we optimize a convex dual function which maps a vector of resource prices to a bound on the achievable utility. Since the dual function is n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016